When you have no plans to raise more money or sell the company.

John Sung Kim 3 min read

There was recently a lot of swirl around a co-founder lawsuit and disgruntled investors at TopTal, a freelancer marketplace that competes with UpWork and Fiverr.

* from “The Hustle”

While I don’t agree with doing business this way, a startup has many twists and turns that are difficult to predict, so I’ll reserve judgment on Taso (their CEO) for now.

Our own journey at JetBridge has not been a straight upward line, but we’re now cashflow positive (most months, anyway) and don’t need to raise additional funds for now (though you can’t predict the future). This has me thinking of a much more long term outcome for our company, because I think we can maximize our shareholder’s and investor’s value by thinking much more long term as in 15, maybe even 20 years to a potential IPO.

There’s a global shortage of engineers and it’s going to be this way for the foreseeable future – and every hiring manager in the industry knows it. Yet most clients are unhappy with their offshore outsourcing (many calling it “second class software development”), but JetBridge clients often say there’s “no difference” between us or their in-house teams in San Francisco.

And by the way, JetBridge developers go #1 in hackathons.

We think we’re on to something, potentially big, but I want us to be patient.

After Five9 and DoctorBase (our first two startups), Mischa and I started JetBridge as a Micro-LMS product company, but we made two big mistakes – we hired our out-of-work friends as early team members, and we didn’t accurately predict our user’s future behavior.

Working with our friends ended up being incredibly difficult, lots of fights ensued, and we eventually ended up letting go (or they quit) our amigos. Hiring friends is a rookie mistake and after two successful startups, I’m still kicking myself for how I could have been so blinded by my loyalty, much to the detriment of the business.

As well, our users (who initially loved using our app) simply stopped using the product after a couple of months as they tired of creating learning material for their teams.

In our desperate attempt to not have a failed startup, we pivoted to a software services company where we used our deep experience in building B2B SaaS products to code projects for other companies.

And we discovered something we absolutely loved – teaching young developers around the world how to become better coders and founders.

Our workshops and speeches are often standing room only.

As this is my third startup, I’m much less focused on an early exit and much more focused on how we grow an organization that helps offshore developers and designers have the best careers possible.

If you were to walk into our offices in Kiev or Wroclaw, you could feel the energy and enthusiasm of our people – something that is extremely rare in IT outsourcers. We do offer our core team members equity in a simple structure that’s fair and easy to understand, and people often come into the office on weekends when needed without being asked. Nothing about JetBridge feels, smells or performs like an outsourcer.

Our clients consistently tell us we feel like an in-house engineering team in San Francisco. We’re super proud of that.

We’ve also partnered with some amazing technical universities in Ukraine and Poland, and I believe our model is right to create “Outsourcing 2.0”

JetBridge skills workshop at KPI (often referred to as the “MIT of Eastern Europe”).

I don’t feel any pressures to sell the company for a “quick flip” or raise unneeded money “because it’s cheap,” and quite frankly making software for other people is 70% of the fun with only 30% of the stress.

Best of all, knowing we’re making a real difference in the lives of the young people we mentor or to those who come to our speeches or workshops is incredibly fulfilling in ways that running a SaaS company never was for me.

And at this point in my life, that’s what it’s all about.

* Some folks at the Kiev office just before lunch.

Are you at work in IT? Look to your left and to your right. If you’re more ambitious than both of these people, contact us. We want to talk.

Serverless Python API Development

Mischa Spiegelmock 5 min read

In a previous article I discussed how to interact with the serverless AWS Lambda platform using only tools provided by Amazon. This was a valuable experiment that I suggest applying to any new technology or interesting new system you’d like to learn. Start with the basics and try doing a project without too many extra tools or abstractions so that you can get an idea of how the underlying system works and what’s unpleasant or boilerplate-y or requires too much effort. Once you have an idea of how the pieces fit together you can have a much better appreciation for the abstractions that go on top because you understand how they work, what problems they are solving, and what pain they are saving you from.

AWS services are powerful but generally need to be put together in coherent ways to achieve your goals. They’re modules that provide the functionality you need but still require some glue to make a nice developer experience. Fortunately because the entire platform is scriptable, software tools and additional layers of abstraction are rapidly increasing the capabilities of software engineers on their own to manage configuration without the need for any hardware or humans in between. CloudFormation (CF) allows declaration of your infrastructure with JSON or YAML. CF templates like the Serverless and CodeStar transforms make it easier to write less CloudFormation code to describe a serverless configuration. And then tools like the Serverless toolkit add another layer of automation on top of CF and provide a really excellent developer experience. Not to be outdone, Amazon provides an even higher level toolkit called Amplify (subject of a future article) to further increase the leverage of effort to available hardware and software muscle.

Serverless Toolkit

After going through the process of building some toy applications using AWS SAM and the Serverless CF transform, I quickly saw some of the drawbacks of not using a more advanced system to automate things:

  1. Viewing logs. Looking at CloudWatch logs in the AWS Console is not a great way to view the output of your application in real time, or in any time really. 
  2. It wasn’t clear to me how to save some pieces of a serverless application architecture for re-use in later projects. I posed a question to the Flask mailing list and IRC channel about how to make an extension based around it and didn’t get a useful response.
  3. Defining stuff like API gateways, S3 buckets for code, and domains in CF is tedious. It can be automated further.
  4. It would be nice to have some information readily available, such as what URL my application is deployed at.
  5. Deployments, including to different stages.
  6. Telling me when a deployment is finished, especially when using CodeStar.
  7. Invoking functions for testing and via automation.
  8. Managing dependencies.

And some other general stuff like keeping track of the correct AWS configuration profile and region. 

As happens so often in the field of Computers, I’m not the first one to encounter these issues and some other people have already solved most of the problem for me. 

To ensure a steady supply of confusion when discussing the relatively recent trend of serverless application architecture, there exists a collection of tools called Serverless, which resides on serverless.com. This should not be confused with serverless the adjective or the Serverless Application Model (SAM) or the AWS Serverless CF transform.

Every one of the issues mentioned above is simply handled by Serverless. I believe it’d be an unnecessary expenditure of time and effort to continue to develop serverless applications without it, based upon my recent experience trying to do so. Unless you’re just starting out and want to get a feel for the basics first, that is.

I won’t reiterate the Serverless quickstart here, go try it out yourself on their site. It takes very little effort, especially if you already have AWS credentials set up. I will instead talk about what advantages it gives you:

Logging

This is easy.  You can view (and tail) the logs for any function with

sls logs -f myfunction -t

Reusability

# immediately create a Flask app based on my template
sls install --url https://github.com/revmischa/serverless-flask --name myapp

Some of what people have been doing is going the same route as Create-React-App and creating templates for Serverless projects that can be accessed with “sls install.” On the one hand this does make it very easy to create and share reusable setups and allows for divergence as templates evolve, but it makes it much harder for projects started with older templates to incorporate new refinements. In the realm of Flask and Python, I don’t feel this problem is solved just by templates and some sort of python module that can co-evolve is needed. Something analogous to the react-scripts package that goes along with Create-React-App would likely be the way to go.

Configuration And CloudFormation

Now you declare your resources and functions in the serverless.yml configuration file, along with lots of other useful stuff

Nearly all of the boilerplate CF needed for serverless like a S3 bucket for code, IAM permissions for invoke and CloudWatch, API Gateway, etc are totally hidden from you and you never need to care about them. Only the minimum configuration and CF needed to describe what’s unique about your setup is required from you. On a scale of sendmail.conf to .emacs, serverless.yml is fairly high on the configuration file sublimity scale.

Info

This is easy. Where’d I park my domain again?

$ sls info
Service Information
service: myapp
stage: dev
region: eu-central-1
stack: myapp-dev
api keys:
  None
endpoints:
  ANY - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev
  ANY - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev/{proxy+}
  GET - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev/openapi
functions:
  app: myapp-dev-app
  openapi: myapp-dev-openapi
Serverless Domain Manager Summary
Domain Name
  myappmyapp.net
Distribution Domain Name
  dcwyw3gslhqw1.cloudfront.net

Deployment

This is easy too! Too easy!

$ sls deploy
$ sls deploy -s prod # specify stage

This bundles requirements if needed, packages the service, uploads to S3, and kicks off a CloudFormation stack update. 

Notice that sweet Serverless Domain Manager Summary section?
That, my friend, is the serverless-domain-manager plugin. If you want your endpoints to be deployed under a domain name you already have in a Route53 zone (and hopefully have an ACM certificate in us-west-1 to go with it) you can have Serverless automatically fire up the domain or subdomain for you along with a CloudFront distribution and API Gateway domain mapping.

I discovered an issue with the domain manager plugin selecting the ACM certificate for your domain at random among a list of matching domain names. This was picking an expired previous certificate, so I fixed it to filter out any unusable certificates. My PR was quickly and politely merged. Always a positive sign.

Waiting / Notifications

The aforementioned deploy command tells you when it’s done. Then you can test it out right away. You can speed it by only deploying a specific function, or using the S3 accelerate option to speed up uploading of your artifacts. Don’t waste time deploying stuff you don’t need or watching the CodeStar web UI.

Invoking Functions

AWS SAM is pretty easy, and so is Serverless. If developing a python webapp with the serverless-wsgi plugin, you can also serve your app up locally.

Managing Dependencies

(This part is python-specific)

How to manage dependencies for your python lambda? Well, just stick them in requirements.txt. Duh, right? With Serverless, more or less right. Remember that any dependencies have to be bundled in your lambda’s zip file. Need to build binary dependencies and not on a linux amd64 platform? Just add “dockerizePip: true” to the serverless-python-requirements plugin configuration in serverless.yml and you’re good to go.

Note that if invoking functions locally or starting the WSGI server, you still need a local virtualenv. One wacky non-Serverless template I looked at used pipenv instead to manage both local and lambda dependencies, but I couldn’t advise it; it’s pretty weaksauce.

Extending Serverless

Mostly what I’ve been doing with AWS Lambda is making small web API services using Python and the Flask microframework. With serverless providing exactly the tooling I need, I also want to be able to start new projects with a minimum of effort and have some pieces already in place that I can build on for my application.

I forked a serverless-flask template I found and started building on top of it. I made it not ask if you want to use python 2 or 3 (why not ask if I want UTF-8 or EBCDIC while you’re at it?) and defaulted dockerizing pip to false.

If building an API server in Flask, your life can be made much nicer with the addition of marshmallow to handle serializing and deserializing requests, flask-apispec to integrate marshmallow with OpenAPI (“swagger”) and Flask, and CORS. My version of the template includes all of this to make it as easy as humanly possible to make a documented serverless python REST API with the absolute minimal amount of effort and typing. And as a bonus it generates client libraries for your API from the OpenAPI definition in any language you desire.

Instructions for using the template and getting started quickly can be found here.

Serverless? Why Not

This article is a marker in the path our journey so far has taken us. Improving how we build applications and services is an ongoing process. Our previous milestone was unassisted AWS services, this present adventure was improved tooling for those services, and the next level to up may be AWS Amplify and GraphQL. Or maybe not. Stay tuned.

Video Encoding on AWS

Mischa Spiegelmock 5 min read

Adding video encoding support to your application is relatively straightforward with Amazon’s Video On Demand encoding pipeline infrastructure template.

This CloudFormation template provides you with:

  • A S3 media source bucket where video files get uploaded, with an option to phase out media source files to long-term storage in Glacier.
  • A DynamoDB table to track the status of the encoding and store all metadata about the source and output files.
  • A series of Step Functions (Lambda state machines) to manage the stages of the pipeline.
  • MediaConvert to do the actual video encoding work.
  • An output S3 bucket for the encoded files and playlists, with a CloudFront CDN distribution in front.
  • A SNS topic which publishes events to subscribers when media ingestion begins and when it completes, as well as if there is an error.

The one deficiency in the CloudFormation template provided by AWS is that it does not include the SNS topic as a stack output, which makes it harder to tie it into other applications. JetBridge hosts a version of the stack which includes the SNS topic output at https://ext.jetbridge.com.s3.amazonaws.com/vod/video-on-demand-on-aws.template.

You can deploy the stack here:

Once the stack has finished launching, you can try uploading a video file into the source S3 bucket.

When files are added to the bucket a Lambda is automatically triggered that begins the ingestion and kicks it over to MediaConvert after generating a GUID to track the progress of the encoding.

After the encoding is complete you will have an entry in the DynamoDB table with information about the media files and the outputs, including a HLS M3U8 (HTTP Live Streaming MP3 URL UTF-8 playlist) which can be used by any web or mobile client to stream your video at adaptable bitrates.

The resulting output.

Integrating To Your Application

The VOD encoder pipeline is a pretty nifty example of how to use ready-made stacks of infrastructure, but what if you want to integrate this pipeline into your application? Let’s look at one way you can accomplish this.

Say you are building a CMS where you want users to be able to upload videos that can be streamed by clients. You will need a user interface for performing the upload and then a way to associate the results with that object when the encoding process completes or errors.

The flow from the application’s perspective will look like this:

  1. Register a Lambda for handling notifications from the VOD SNS topic.
  2. Create an object in your database to store the uploaded video. A row in a video table would suffice just fine. Make up a S3 key for this row (based on the video’s ID or better, UUID) and store it in the video row as well.
  3. Generate a pre-signed S3 PutObject request URL (Python docs) for the media source bucket.
  4. On the browser side, upload the video file to the pre-signed S3 upload URL. Once the upload is complete the Lambda trigger will be automatically invoked, kicking off the encoding job.
  5. Process ingestion notification received from the SNS topic. This notification includes the UUID generated by the pipeline to keep track of your job and the original S3 key of the video file that was just uploaded. Store the VOD task UUID in your video database row associated with the S3 key.
  6. When you receive a completion or error notification from the SNS pipeline, update the video row appropriately. You now have either a HLS playlist URL associated with your video or an error message.

Registering For SNS Notifications

You can set up everything above by hand, but making reusable infrastructure is easier and more powerful. If you are using the Serverless toolkit you can use the SNS topic CloudFormation output (remember the one mentioned above that we had to add to the template?) to register a Lambda to listen for events:

functions:
  vodSnsUpdateHandler:
    handler: myapp.handler.vod_sns_update.handler
    events:
      - sns: ${cf:vod.SnsNotificationTopic}  # cloudformation output

This will invoke the function myapp.handler.vod_sns_update.handler whenever a new message is published on the SNS topic in the CloudFormation stack named vod (that’s what I called it, you can change it if you really want).

Other CloudFormation Stack Outputs

Your application will also need to know the name of the source media S3 bucket to generate the presigned upload request as well as the name of the DynamoDB table to fetch the results from. Again, this example is for Serverless:

provider:
  name: aws
  ...
  environment:
    S3_VOD_SOURCE_BUCKET: ${cf:vod.Source}
    VOD_TABLE: ${cf:vod.DynamoDBTable}

This has the effect of passing the source S3 bucket and DynamoDB table names from the VOD stack outputs into your application as environment variables.

S3 Presigned Upload

You can create a URL that you can give to a client to permit it to upload a file to a designated S3 key:

    s3 = boto3.client("s3")
    put_params = dict(Bucket=os.environ['S3_VOD_SOURCE_BUCKET'], Key=s3key)
    expire = 3600  # one hour
    url = s3.generate_presigned_url(
        ClientMethod="put_object", 
        Params=put_params, 
        ExpiresIn=expire,
    )

This URL can then be returned to a web browser which can then do a PUT to the URL with the contents of the file as the body of the request.

I recommend generating a S3 key in the form of: f"/video/{video.uuid}/media.mp4"

Processing SNS Notifications

This should be a Lambda handler that looks up the associated video entry in your database and updates it with the status published by the VOD pipeline. Some rough sample code:

import boto3
import os
import json
from myapp.db import db
from myapp.model.video import Video
from enum import Enum, unique
from typing import Optional
import logging

log = logging.getLogger(__name__)

@unique
class EncodingStatus(Enum):
    new = "new"
    ingest = "Ingest"
    complete = "Complete"
    error = "Error"

table = os.environ["VOD_TABLE"]
dynamodb = boto3.resource("dynamodb")
table = dynamodb.Table(table)


def handler(event, context):
    records = event.get("Records", [])
    with app.app_context():  # if you use Flask-SQLAlchemy
        for record in records:
            log.debug(f"Processing VOD SNS event...")
            process_event_record(record)
        db.session.commit()
    return "ok"


def process_event_record(record: dict):
    assert "Sns" in record
    assert "Message" in record["Sns"]
    message = json.loads(record["Sns"]["Message"])

    # look up asset by key/bucket
    src_video = message.get("srcVideo")

    status = EncodingStatus(message.get("status", message.get("workflowStatus")))
    guid = message.get("guid")
    log.debug(f"Video: {src_video}, status={status}, guid={guid}")

    if not src_video:
        # this is missing in case of error
        if status == EncodingStatus.error:
            video = db.session.query(Video).filter_by(vod_guid=guid).one_or_none()
            if not video:
                log.warning(f"Got video GUID for unknown video {record}")
            else:
                video.encoding_status = status
        log.warning(f"Got video encoding without video src {record}")
        return None

    # look up video by S3 key
    video = Video.query.filter_by(s3key=src_video).one_or_none()
    if not video:
        log.warning(f"Could not find video {src_video}")
        return None

    # update video
    video.vod_guid = guid
    video.encoding_status = status
    video.vod_last_message = message
    video.hls_url = message.get("hlsUrl") if message.get("hlsUrl") else video.hls_url
    thumbnail_urls = message.get("thumbNailUrl", [])
    video.placeholder_url = thumbnail_urls[0] if thumbnail_urls else None
    video_data_info = get_video_data_info(guid)

    if not video_data_info:
        if status == EncodingStatus.complete:
            log.warning(f"Could not find data about encoding {record}")
        return asset

    src_media_info = video_data_info.get("srcMediainfo")
    encoding_details = json.loads(src_media_info) if src_media_info else None

    if not encoding_details:
        log.warning(f"Could not find encoding info {record} // {encoding_details}")
    video.duration = encoding_details["container"]["duration"]  # ms

    print(f"Media info: {src_media_info}")
    db.session.commit()

def get_video_data_info(guid: str) -> Optional[dict]:
    result = table.get_item(Key={"guid": guid})
    return result.get("Item")

Conclusion

And now you have a powerful media encoding pipeline integrated into your application. Some features to note are :

  • Thumbnail URLs are automatically generated.
  • Media info is output which contains everything from duration to dimensions to colorspace.
  • HLS, DASH, and MP4 outputs are produced.
  • Quality-Defined Variable Bitrate encoding is used by default.
  • Microsoft Smooth Streaming (MSS) and Common Media Application Format (CMAF) are also supported.

Hope that was helpful!