Serverless Python API Development

Mischa Spiegelmock 5 min read

In a previous article I discussed how to interact with the serverless AWS Lambda platform using only tools provided by Amazon. This was a valuable experiment that I suggest applying to any new technology or interesting new system you’d like to learn. Start with the basics and try doing a project without too many extra tools or abstractions so that you can get an idea of how the underlying system works and what’s unpleasant or boilerplate-y or requires too much effort. Once you have an idea of how the pieces fit together you can have a much better appreciation for the abstractions that go on top because you understand how they work, what problems they are solving, and what pain they are saving you from.

AWS services are powerful but generally need to be put together in coherent ways to achieve your goals. They’re modules that provide the functionality you need but still require some glue to make a nice developer experience. Fortunately because the entire platform is scriptable, software tools and additional layers of abstraction are rapidly increasing the capabilities of software engineers on their own to manage configuration without the need for any hardware or humans in between. CloudFormation (CF) allows declaration of your infrastructure with JSON or YAML. CF templates like the Serverless and CodeStar transforms make it easier to write less CloudFormation code to describe a serverless configuration. And then tools like the Serverless toolkit add another layer of automation on top of CF and provide a really excellent developer experience. Not to be outdone, Amazon provides an even higher level toolkit called Amplify (subject of a future article) to further increase the leverage of effort to available hardware and software muscle.

Serverless Toolkit

After going through the process of building some toy applications using AWS SAM and the Serverless CF transform, I quickly saw some of the drawbacks of not using a more advanced system to automate things:

  1. Viewing logs. Looking at CloudWatch logs in the AWS Console is not a great way to view the output of your application in real time, or in any time really. 
  2. It wasn’t clear to me how to save some pieces of a serverless application architecture for re-use in later projects. I posed a question to the Flask mailing list and IRC channel about how to make an extension based around it and didn’t get a useful response.
  3. Defining stuff like API gateways, S3 buckets for code, and domains in CF is tedious. It can be automated further.
  4. It would be nice to have some information readily available, such as what URL my application is deployed at.
  5. Deployments, including to different stages.
  6. Telling me when a deployment is finished, especially when using CodeStar.
  7. Invoking functions for testing and via automation.
  8. Managing dependencies.

And some other general stuff like keeping track of the correct AWS configuration profile and region. 

As happens so often in the field of Computers, I’m not the first one to encounter these issues and some other people have already solved most of the problem for me. 

To ensure a steady supply of confusion when discussing the relatively recent trend of serverless application architecture, there exists a collection of tools called Serverless, which resides on serverless.com. This should not be confused with serverless the adjective or the Serverless Application Model (SAM) or the AWS Serverless CF transform.

Every one of the issues mentioned above is simply handled by Serverless. I believe it’d be an unnecessary expenditure of time and effort to continue to develop serverless applications without it, based upon my recent experience trying to do so. Unless you’re just starting out and want to get a feel for the basics first, that is.

I won’t reiterate the Serverless quickstart here, go try it out yourself on their site. It takes very little effort, especially if you already have AWS credentials set up. I will instead talk about what advantages it gives you:

Logging

This is easy.  You can view (and tail) the logs for any function with

sls logs -f myfunction -t

Reusability

# immediately create a Flask app based on my template
sls install --url https://github.com/revmischa/serverless-flask --name myapp

Some of what people have been doing is going the same route as Create-React-App and creating templates for Serverless projects that can be accessed with “sls install.” On the one hand this does make it very easy to create and share reusable setups and allows for divergence as templates evolve, but it makes it much harder for projects started with older templates to incorporate new refinements. In the realm of Flask and Python, I don’t feel this problem is solved just by templates and some sort of python module that can co-evolve is needed. Something analogous to the react-scripts package that goes along with Create-React-App would likely be the way to go.

Configuration And CloudFormation

Now you declare your resources and functions in the serverless.yml configuration file, along with lots of other useful stuff

Nearly all of the boilerplate CF needed for serverless like a S3 bucket for code, IAM permissions for invoke and CloudWatch, API Gateway, etc are totally hidden from you and you never need to care about them. Only the minimum configuration and CF needed to describe what’s unique about your setup is required from you. On a scale of sendmail.conf to .emacs, serverless.yml is fairly high on the configuration file sublimity scale.

Info

This is easy. Where’d I park my domain again?

$ sls info
Service Information
service: myapp
stage: dev
region: eu-central-1
stack: myapp-dev
api keys:
  None
endpoints:
  ANY - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev
  ANY - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev/{proxy+}
  GET - https://di1baaanvc.execute-api.eu-central-1.amazonaws.com/dev/openapi
functions:
  app: myapp-dev-app
  openapi: myapp-dev-openapi
Serverless Domain Manager Summary
Domain Name
  myappmyapp.net
Distribution Domain Name
  dcwyw3gslhqw1.cloudfront.net

Deployment

This is easy too! Too easy!

$ sls deploy
$ sls deploy -s prod # specify stage

This bundles requirements if needed, packages the service, uploads to S3, and kicks off a CloudFormation stack update. 

Notice that sweet Serverless Domain Manager Summary section?
That, my friend, is the serverless-domain-manager plugin. If you want your endpoints to be deployed under a domain name you already have in a Route53 zone (and hopefully have an ACM certificate in us-west-1 to go with it) you can have Serverless automatically fire up the domain or subdomain for you along with a CloudFront distribution and API Gateway domain mapping.

I discovered an issue with the domain manager plugin selecting the ACM certificate for your domain at random among a list of matching domain names. This was picking an expired previous certificate, so I fixed it to filter out any unusable certificates. My PR was quickly and politely merged. Always a positive sign.

Waiting / Notifications

The aforementioned deploy command tells you when it’s done. Then you can test it out right away. You can speed it by only deploying a specific function, or using the S3 accelerate option to speed up uploading of your artifacts. Don’t waste time deploying stuff you don’t need or watching the CodeStar web UI.

Invoking Functions

AWS SAM is pretty easy, and so is Serverless. If developing a python webapp with the serverless-wsgi plugin, you can also serve your app up locally.

Managing Dependencies

(This part is python-specific)

How to manage dependencies for your python lambda? Well, just stick them in requirements.txt. Duh, right? With Serverless, more or less right. Remember that any dependencies have to be bundled in your lambda’s zip file. Need to build binary dependencies and not on a linux amd64 platform? Just add “dockerizePip: true” to the serverless-python-requirements plugin configuration in serverless.yml and you’re good to go.

Note that if invoking functions locally or starting the WSGI server, you still need a local virtualenv. One wacky non-Serverless template I looked at used pipenv instead to manage both local and lambda dependencies, but I couldn’t advise it; it’s pretty weaksauce.

Extending Serverless

Mostly what I’ve been doing with AWS Lambda is making small web API services using Python and the Flask microframework. With serverless providing exactly the tooling I need, I also want to be able to start new projects with a minimum of effort and have some pieces already in place that I can build on for my application.

I forked a serverless-flask template I found and started building on top of it. I made it not ask if you want to use python 2 or 3 (why not ask if I want UTF-8 or EBCDIC while you’re at it?) and defaulted dockerizing pip to false.

If building an API server in Flask, your life can be made much nicer with the addition of marshmallow to handle serializing and deserializing requests, flask-apispec to integrate marshmallow with OpenAPI (“swagger”) and Flask, and CORS. My version of the template includes all of this to make it as easy as humanly possible to make a documented serverless python REST API with the absolute minimal amount of effort and typing. And as a bonus it generates client libraries for your API from the OpenAPI definition in any language you desire.

Instructions for using the template and getting started quickly can be found here.

Serverless? Why Not

This article is a marker in the path our journey so far has taken us. Improving how we build applications and services is an ongoing process. Our previous milestone was unassisted AWS services, this present adventure was improved tooling for those services, and the next level to up may be AWS Amplify and GraphQL. Or maybe not. Stay tuned.